NGS : reads quality control

Data used in this tutorials are available on https:/urgi.versailles.inra.fr/download/Tuto/NGS-reads-quality-control.

Select <u>genome solexa.fasta</u>, <u>illumina.fastq</u>, <u>solexa.fastq</u> and import them into your current history. With the respectively type of data fasta , fastqIllumina and fastqsolexa.</u>

ownload from web or	upload from disk				
Regular <u>Composite</u>					
	You added 3 file(s) to	the queue. Add	more files or click 'Start' to p	proceed.	
You can tell Galaxy to dow	nload data from web by e	ntering URL in this file.	s box (one per line). You can	also directly paste the conter	nts of a 🔨
https://urgi.versailles.inra	.fr/download/tuto/NGS-re	ads-quality-contro	ol/genome_solexa.fasta		
I New File	86 b fastqillum		unspecified (?)	¢ 0%	Ē
You can tell Galaxy to dow	nload data from web by e	ntering URL in this file.	s box (one per line). You can	also directly paste the conter	nts of a
https://urgi.versailles.inra	.fr/download/tuto/NGS-re	ads-quality-contro	ol/illumina.fastq		
🕜 New File	84 b fastqsole	. v Q	unspecified (?)	¢ 0%	Ē
You can tell Galaxy to dow	nload data from web by e	ntering URL in this file.	s box (one per line). You can	also directly paste the conter	nts of a
https://urgi.versailles.inra	.fr/download/tuto/NGS-re	ads-quality-contro	ol/solexa.fastq		
Type (set all):	Auto-detect	▼ Q	Genome (set all):	unspecified (?)	¥
		hoose local file	🕑 Paste/Fetch data	Pause Reset Star	tClose

FastQC	2
Webpage Sections :	
Summary Index	3
Basic Statistics	3
Box plot per base sequence quality	4
Quality per tile	5
Average sequence quality	6
Sequence content across bases	7
<u>GC content (sequence)</u>	8
N content (base)	9
Sequence length	10
Sequence duplication.	11
Overrepresented sequences	12
Adapter content	13
Kmer content	14
Fastq Groomer	15
Trimming	17
Filter by quality	18

FastQC

Load the FastQC tool (section : NGS: QC and manipulation) -> FastQC: Read Quality reports

Choose illumina.fastq file as input and execute.

FastQC run several tests on a maximum subset of 200000 reads (first 200000 reads) of your fastq file. More information on <u>www.bioinformatics.babraham.ac.uk</u> fastqc on line help

Two files in output : rawdata is a txt file and web page that is a html file.

FastQC Read Quality reports (Galaxy Tool Version 0.65)
Short read data from your current history
C 2: illumina.fastq
Contaminant list
C C Nothing selected
tab delimited file with 2 columns: name and sequence. For example: Illumina Small RNA RT Prime CAAGCAGAAGACGGCATACGA
Submodule and Limit specifing file
D 4 D Nothing selected
a file that specifies which submodules are to be executed (default=all) and also specifies the thr submodules warning parameter
✓ Execute

Webpage Sections : Summary Index

Basic Statistics

Basic Statistics				
Measure	Value			
Filename	illumina.fastq			
File type	Conventional base calls			
Encoding	Illumina 1.5			
Total Sequences	1138429			
Sequences flagged as poor quali	ty 0			
Sequence length	38			
%GC	43			

Box plot per base sequence quality

Quality per tile

Average sequence quality

Sequence content across bases

The bias in nucleotide composition at the start of illumina reads is explained by random primers (ref: Biases in Illumina transcriptome sequencing caused by random hexamer priming, Hansen et al, 2010, NAR)

N content (base)

Sequence length

Sequence duplication

High sequence level duplication could be explained by several factors. In our case, the fastq file contains few sequences extracted from a RNA-Seq analysis. The duplicated sequences are the multiple counts for each gene.

(info: only the 50 first bases are taken into account. The percentage of duplicated sequences is on a relative scale, with the number of sequences occurring exactly once.)

Blog post to read : here

Overrepresented sequences

Overrepresented sequences

Sequence	Count	Percentage	Possible Source
TGACCCGTGATGGAGGCGGCCGGGATAGCACATATCAG	21255	1.8670466054536559	No Hit
CGGCTATAATAAATCGATCTTTGCGGGCAGCCCGTTGG	12397	1.0889567992382485	No Hit
AAGGTGACCCGTGATGGAGGCGGCCGGGATAGCACATA	12187	1.0705103260721573	No Hit
CGGGCAGCCCGTTGGCAGGAGGCGTGAGGAATCCGTCT	11906	1.0458271881689591	No Hit
TACTATGATGAATGACATTAGCGTGAACAATCTCTGAT	10282	0.9031744623511875	No Hit
ACGTTTGACAACACTCTGGGACCAAGTTTCGATGGTTA	9689	0.8510851357440823	No Hit
AAAGGTGACCCGTGATGGAGGCGGCCGGGATAGCACAT	9327	0.8192869296196775	No Hit
GGGCAGCCCGTTGGCAGGAGGCGTGAGGAATCCGTCTC	8773	0.7706233766005609	No Hit
TGGAGGCGGCCGGGATAGCACATATCAGTCGGATAATT	8714	0.7654407960443734	No Hit
AGGATTTACTCGCACATTGTGGCCGTTCCCTCGGGGAT	7273	0.638862853985624	No Hit
GAGGCGGCCGGGATAGCACATATCAGTCGGATAATTGT	6750	0.5929223517672161	No Hit
CGTGGCCTTTTTCACCACCTTTATAGCGGTGCTTTAAC	5983	0.5255488045367783	No Hit
GTTATATGATGATAACCTTCTCAGCTCACTCAGATCTT	5536	0.4862841687975271	No Hit
AATCCGTCTCTCTGTCTGGTGCGGCAAGGTAGTTCTGG	4503	0.3955450888900406	No Hit
AGATAGATTGAACGTTGCTGGGCGCCTGGTGTTGATCA	4379	0.3846528856872058	No Hit
AGCTGAAAAGTTCTGGGTTAACCCAGATTGTGGTTTGA	3802	0.33396900465466006	No Hit
TTTGCGGGCAGCCCGTTGGCAGGAGGCGTGAGGAATCC	3717	0.3265025750398136	No Hit
GGAGGCGGGAGAGTCCGTTCTGAAGTGTCCCGGCTATA	3716	0.3264147346914037	No Hit
CAAACAAGATTAATTTAGGCGATTACTCACTAAGATAT	3652	0 32079295239316635	No Hit

Adapter content

Kmer content

Sequence	Count	PValue	Obs/Exp Ma	x Max Obs/Exp Position	
CGTACCT	30	2.2343991E-5	32.024796	11	
AGCACCG	20	0.0037578726	31.992388	29	
TTCGCAG	120	0.0	29.384535	18	
TATAGCG	635	0.0	29.279364	22	
ATAGCGG	635	0.0	29.244553	23	
CCGCACC	425	0.0	29.00048	32	
GTGGCCT	660	0.0	28.790955	2	
AGCGGTG	660	0.0	28.556538	25	
CGCCTGG	555	0.0	28.556366	23	
ACGTTTG	1125	0.0	28.535923	1	
TAGGCGA	430	0.0	28.337175	16	
AACACTC	1140	0.0	28.335407	10	
ACCACCT	670	0.0	27.96441	14	
TACTCAC	435	0.0	27.942457	24	
TCACTAA	430	0.0	27.854992	27	
AGGCGAT	435	0.0	27.629488	17	
GGCCTTT	695	0.0	27.36749	4	
CACCACC	685	0.0	27.352053	13	
CTGGGAC	1175	0.0	27.29	16	ads-quality-control
CTAAGAT	440	0.0	27.28665	30	

Back

Fastq Groomer

The aim of the fastq Groomer is to homogenize the quality of the different fastq formats. The usual quality is in Sanger encoding (phred+33) with expected characters from ! to J. The role of the fastq Groomer is to perform this transform. Moreover, it sets the metadata associated with the fastq format. So, the format is not just a fastq, it becomes a fastqsanger, fastqillumina or fastqsolexa. If you know that your data are encoded in phred+33, Sanger, you can avoid this step and edit the metadata associated with your sequences. To do that, clic on the pen in data box and edit attributes. Select "fastqsanger" as datatype instead of "fastq".

Figure: Explanation of data quality encoding and the relation betwwen quality value and corresponding ASCII table elements.

Explore the uploaded file illumina.fastq content (clic on the eye).

2: illumina.fastq 🕘 🥒 🗙 This dataset is large and only the first megabyte is shown below. 174.1 MB Show all | Save format: fastgillumina, database: ? @HWUSI-EAS1656_0009_FC:1:1:1145:8238#0 Uploaded file from ACGATATTTTGTCCGTGCTAGACTCCNACTTAATTCCA +HWUSI-EAS1656_0009_FC:1:1:1145:8238#0 https://urgi.versailles.inra.fr /download/tuto/NGS-readsgggggfggcccccffcfffcdcfebcFccccddcdggg @HWUSI-EAS1656_0009_FC:1:1:1150:15676#0 quality-control ATGGCTGATATTACTGATAAGACAGCTGAACAATTGGA /illumina.fastq uploaded fastgillumina file +HWUSI-EAS1656_0009_FC:1:1:1150:15676#0 cce_gffc[ff_fcf_[_ffc]]ccc[<mark>dffcWfcW</mark>_ff **N** 🗩 @HWUSI-EAS1656 0009 FC:1:1:1150:20431#0 80 CGGGCAGCCCGTTGGCAGGAGGCGTGAGGAATCCGTCT @HAUSI-EAS1656_0009_FC:1:1:1145:8238#0 +HWUSI-EAS1656_0009_FC:1:1:1150:20431#0 ACGATATTTTGTCCGTGCTAGACTCCNACTTAATTCCA cYfffffdfaff]ff ae'WacccZ^Xa^J]Q''^acc @HWUSI-EAS1656 0009 FC:1:1:1152:17358#0 ++HUSI-EA51656_0009_FC:1:1:1145:8238#0 TTGGCTACTTACTTCGGTACCGTTGTCCCTAACTTAGA gggggfggcccccffcfffcdcfebcFccccddcdggg +HWUSI-EAS1656 0009 FC:1:1:1152:17358#0 BHHUSI-EAS1656 0009 FC:1:1:1150:15676#0 fgggaggggggggggggccReeeddea`eeddcfcf_fe ATGGCTGATATTACTGATAAGACAGCTGAACAATTGGA @HWUSI-EAS1656_0009_FC:1:1:1155:17012#0

The quality line contains g,f,c,d characters. The quality is encoding in illumina 1.3-1.7.

Select the FASTQ Groomer in (NGS: QC and manipulation -> ILLUMINA FASTQ).

Select the file, the incoming encoding is illumina 1.3-1.7. Let default option, the outcoming encoding is Sanger.

FASTQ Groomer convert between various FASTQ quality formats (Galaxy Tool Version 1.0.4)	▼ Options
File to groom	•
Input FASTQ quality scores type	
Illumina 1.3-1.7	•
Advanced Options	
Hide Advanced Options	•
✓ Execute	

The output is now in "fastqsanger" format.

This dataset is large and only the first megabyte is shown below. Show all Save	6: FASTQ Image: Second stars Groomer on data Image: Second stars 2 View data 174.1 MB
@HWUSI-EAS1656_0009_FC:1:1:1145:8238‡0	format: fastqsanger ,
ACGATATTTTGTCCGTGCTAGACTCCNACTTAATTCCA	database: <u>?</u>
+HWUSI-EA81656_0009_FC:1:1:1145:8238#0	Groomed 1138429 sanger
gggggfggcccccffcfffcdcfebcFccccddcdggg	reads into sanger reads.
@HWUSI-EA81656_0009_FC:1:1:150:15676#0	Based upon quality and
ATGGCTGATATTACTGATAAGACAGCTGAACAATTGGA	sequence, the input data is
+HWUSI-EA81656_0009_FC:1:1:150:15676#0	valid for: solexa, sanger,
cce_gffc[ff_fcf_[_ffc]]ccc[dffcWfcW_ff	illumina
@HWUSI-EA81656_0009_FC:1:1:150:20431#0	Input ASCII range: 'B'(66)
CGGGCAGCCCGTTGGCAGGAGGGGGGGGGGGGGATCCGTCT	- 'h'(104)
+HWUSI-EA81656_0009_FC:1:1:150:20431#0	Input decimal range: 33 -
cYfffffdfaff]ff_ae'Waccc2^Xa^J]Q``acc	71
HWUSI-EAS1656_0009_FC:1::1152:17358#0 +HWUSI-EAS1656_0009_FC:1:1:1152:17358#0	802 >>
fgggaggggaggg^ccReeeddea`eeddcfcf_fe_	<pre>@HINSI-EAS1656_0009_FC:1:1:1145:8238#0</pre>
@HWUSI-EAS1656_0009_FC:1:1:1155:17012‡0	ACGATATTTTGTCCGTGCTAGACTCCIACTTAATTCCA
AAGAGCAAACGGTCTTTGTGATAGCTCAACGTCATTCG	HHINSI-EAS1656_0009_FC:1:1:1145:8238#0
+HWUSI-EAS1656_0009_FC:1:1:1155:17012‡0	888888f88cccccffcfffcdcfebcFccccddcdg888
c]ff_b^_ffefcffgg_gcf^ffcf^ad^ac\\caa	@HINSI-EAS1656_0009_FC:1:1:1150:15676#0
@HWUSI-EAS1656_0009_FC:1:1:1155:20602‡0	ATGGCTGATATTACTGATAAGACAGCTGAACAATTGGA

Trimming

Trimmomatic is a tool dedicated to reads cleaning in Single or Paired End mode. It performs adaptor removal, trimming by sliding window or cut off, minimum length, ...

Select **Trimmomatic** in (**NGS: QC and manipulation**). We will remove adaptors (used with GAII sequencer library type) and trim sequence with a sliding window of 4 bases and an average quality of 20.

🗲 Trimmo	matic flexible read trimming tool for Illumina NGS data (Galaxy Tool Version 0.36.0)
Paired en	d data?
Yes No	2
Input F	ASTQ file
0 0) 🗀 6: FASTQ Groomer on data 2
Perform i	
Yes No	
Cut adapte	r and other illumina-specific sequences from the read
Adapter	sequences to use
TruSeq2	(single-ended, for Illumina GAII)
Maximu	m mismatch count which will still allow a full match to be performed
2	
How ac	curate the match between the two 'adapter ligated' reads must be for PE palindrome read alignmen
30	
How ac	curate the match between any adapter etc. sequence must be against a read
10	
Trimmom	atic Operation
1: Trimmo	matic Operation
Select T	rimmomatic operation to perform
Sliding	window trimming (SLIDINGWINDOW)
Numb	er of bases to average across
4	· · · · · · · · · · · · · · · · · · ·
	es sustitui essuitesd
Averag	
[[==	
+ Insert 1	Fimmomatic Operation

✓ Execu	

Important: There is no common way to clean data. You have to analyze your read contents to define adequate filtering process.

Instead of Trimmomatic, you can use simple task tools of the FastX Toolkit or Generic Fastq Manipulation.

FASTQ Quality Trimmer by sliding window

Select FASTQ Quality Trimmer in (NGS: QC and manipulation -> GENERIC FASTQ MANIPULATION). We will trim read end until the quality of the current base is higher than 20.

FASTO Quality Trimmer by sliding window (Galaxy Tool Version 1.0.1)
6: FASTQ Groomer on data 2
Keep reads with zero length
Yes No
Tain and a
5' and 3'
Window size
1
Step Size
1
Manimum sumber of bases to cost do from the mindom during expension
Maximum number of bases to exclude from the window during aggregation
0
Aggregate action for window
Trim until aggregate score is
>=
Quality Score
20
🛩 Execute

Filter by quality

Filter by quality (Galaxy Tool Version 1.0.0)
Library to filter
1 1 1 1 1 1 1 1 1 1
Quality cut-off value
20
Percent of bases in sequence that must have quality equal to / higher than cut-off value
90
✓ Execute