blastp_kegg |
lcl|pper:PRUPE_ppa010390mg
|
1 |
225 |
+ |
225 |
Gaps:10 |
88.84 |
251 |
70.85 |
1e-108 |
hypothetical protein
|
blastp_kegg |
lcl|pmum:103328239
|
1 |
225 |
+ |
225 |
Gaps:10 |
88.84 |
251 |
70.85 |
2e-108 |
trimethylguanosine synthase
|
blastp_kegg |
lcl|fve:101305582
|
25 |
233 |
+ |
209 |
Gaps:6 |
82.33 |
249 |
74.63 |
1e-107 |
trimethylguanosine synthase-like
|
blastp_kegg |
lcl|vvi:100262065
|
2 |
225 |
+ |
224 |
Gaps:11 |
86.69 |
248 |
71.63 |
5e-107 |
trimethylguanosine synthase-like
|
blastp_kegg |
lcl|pxb:103960253
|
2 |
225 |
+ |
224 |
Gaps:7 |
87.15 |
249 |
69.59 |
5e-106 |
trimethylguanosine synthase-like
|
blastp_kegg |
lcl|pxb:103945399
|
2 |
225 |
+ |
224 |
Gaps:7 |
87.15 |
249 |
69.59 |
5e-106 |
trimethylguanosine synthase-like
|
blastp_kegg |
lcl|mdm:103426088
|
25 |
227 |
+ |
203 |
Gaps:6 |
79.12 |
249 |
75.13 |
7e-106 |
trimethylguanosine synthase-like
|
blastp_kegg |
lcl|sot:102588042
|
3 |
233 |
+ |
231 |
Gaps:10 |
89.45 |
256 |
64.19 |
3e-100 |
trimethylguanosine synthase-like
|
blastp_kegg |
lcl|sly:101266167
|
27 |
233 |
+ |
207 |
Gaps:7 |
83.47 |
242 |
70.30 |
5e-100 |
trimethylguanosine synthase-like
|
blastp_kegg |
lcl|eus:EUTSA_v10008708mg
|
18 |
226 |
+ |
209 |
Gaps:9 |
89.69 |
223 |
67.00 |
9e-99 |
hypothetical protein
|
blastp_pdb |
3gdh_C
|
36 |
233 |
+ |
198 |
Gaps:6 |
80.50 |
241 |
53.09 |
9e-63 |
mol:protein length:241 Trimethylguanosine synthase homolog
|
blastp_pdb |
3gdh_B
|
36 |
233 |
+ |
198 |
Gaps:6 |
80.50 |
241 |
53.09 |
9e-63 |
mol:protein length:241 Trimethylguanosine synthase homolog
|
blastp_pdb |
3gdh_A
|
36 |
233 |
+ |
198 |
Gaps:6 |
80.50 |
241 |
53.09 |
9e-63 |
mol:protein length:241 Trimethylguanosine synthase homolog
|
blastp_pdb |
3egi_D
|
48 |
233 |
+ |
186 |
Gaps:6 |
88.35 |
206 |
52.75 |
6e-57 |
mol:protein length:206 Trimethylguanosine synthase homolog
|
blastp_pdb |
3egi_C
|
48 |
233 |
+ |
186 |
Gaps:6 |
88.35 |
206 |
52.75 |
6e-57 |
mol:protein length:206 Trimethylguanosine synthase homolog
|
blastp_pdb |
3egi_B
|
48 |
233 |
+ |
186 |
Gaps:6 |
88.35 |
206 |
52.75 |
6e-57 |
mol:protein length:206 Trimethylguanosine synthase homolog
|
blastp_pdb |
3egi_A
|
48 |
233 |
+ |
186 |
Gaps:6 |
88.35 |
206 |
52.75 |
6e-57 |
mol:protein length:206 Trimethylguanosine synthase homolog
|
blastp_pdb |
2as0_B
|
85 |
161 |
+ |
77 |
Gaps:6 |
20.96 |
396 |
39.76 |
2e-06 |
mol:protein length:396 hypothetical protein PH1915
|
blastp_pdb |
2as0_A
|
85 |
161 |
+ |
77 |
Gaps:6 |
20.96 |
396 |
39.76 |
2e-06 |
mol:protein length:396 hypothetical protein PH1915
|
blastp_uniprot_sprot |
sp|Q923W1|TGS1_MOUSE
|
36 |
233 |
+ |
198 |
Gaps:16 |
22.74 |
853 |
54.12 |
4e-61 |
Trimethylguanosine synthase OS Mus musculus GN Tgs1 PE 1 SV 2
|
blastp_uniprot_sprot |
sp|P85107|TGS1_RAT
|
36 |
233 |
+ |
198 |
Gaps:6 |
22.82 |
850 |
53.09 |
4e-60 |
Trimethylguanosine synthase OS Rattus norvegicus GN Tgs1 PE 1 SV 1
|
blastp_uniprot_sprot |
sp|Q96RS0|TGS1_HUMAN
|
36 |
233 |
+ |
198 |
Gaps:6 |
22.74 |
853 |
53.61 |
1e-58 |
Trimethylguanosine synthase OS Homo sapiens GN TGS1 PE 1 SV 3
|
blastp_uniprot_sprot |
sp|Q09814|TGS1_SCHPO
|
34 |
220 |
+ |
187 |
Gaps:9 |
79.50 |
239 |
41.58 |
7e-42 |
Trimethylguanosine synthase OS Schizosaccharomyces pombe (strain 972 / ATCC 24843) GN tgs1 PE 1 SV 3
|
blastp_uniprot_sprot |
sp|Q12052|TGS1_YEAST
|
16 |
214 |
+ |
199 |
Gaps:21 |
69.21 |
315 |
36.24 |
1e-26 |
Trimethylguanosine synthase OS Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN TGS1 PE 1 SV 1
|
blastp_uniprot_sprot |
sp|Q5UQR2|YL320_MIMIV
|
89 |
207 |
+ |
119 |
Gaps:11 |
47.66 |
256 |
32.79 |
3e-10 |
Uncharacterized protein L320 OS Acanthamoeba polyphaga mimivirus GN MIMI_L320 PE 4 SV 1
|
blastp_uniprot_sprot |
sp|Q7NGN4|Y3134_GLOVI
|
57 |
171 |
+ |
115 |
Gaps:1 |
24.95 |
457 |
28.95 |
8e-08 |
Uncharacterized RNA methyltransferase gll3134 OS Gloeobacter violaceus (strain PCC 7421) GN gll3134 PE 3 SV 1
|
blastp_uniprot_sprot |
sp|Q74I68|Y1698_LACJO
|
53 |
164 |
+ |
112 |
Gaps:6 |
25.78 |
450 |
26.72 |
1e-06 |
Uncharacterized RNA methyltransferase LJ_1698 OS Lactobacillus johnsonii (strain CNCM I-12250 / La1 / NCC 533) GN LJ_1698 PE 3 SV 1
|
blastp_uniprot_sprot |
sp|Q9KF10|Y687_BACHD
|
2 |
164 |
+ |
163 |
Gaps:19 |
37.55 |
458 |
23.26 |
5e-06 |
Uncharacterized RNA methyltransferase BH0687 OS Bacillus halodurans (strain ATCC BAA-125 / DSM 18197 / FERM 7344 / JCM 9153 / C-125) GN BH0687 PE 3 SV 1
|
rpsblast_cdd |
gnl|CDD|150199
|
89 |
225 |
+ |
137 |
Gaps:7 |
87.27 |
165 |
45.83 |
4e-43 |
pfam09445 Methyltransf_15 RNA cap guanine-N2 methyltransferase. RNA cap guanine-N2 methyltransferases such as Schizosaccharomyces pombe Tgs1 and Giardia lamblia Tgs2 catalyze methylation of the exocyclic N2 amine of 7-methylguanosine.
|
rpsblast_cdd |
gnl|CDD|176216
|
65 |
157 |
+ |
93 |
Gaps:20 |
29.88 |
338 |
27.72 |
1e-08 |
cd08254 hydroxyacyl_CoA_DH 6-hydroxycyclohex-1-ene-1-carboxyl-CoA dehydrogenase N-benzyl-3-pyrrolidinol dehydrogenase and other MDR family members. This group contains enzymes of the zinc-dependent alcohol dehydrogenase family including members (aka MDR) identified as 6-hydroxycyclohex-1-ene-1-carboxyl-CoA dehydrogenase and N-benzyl-3-pyrrolidinol dehydrogenase. 6-hydroxycyclohex-1-ene-1-carboxyl-CoA dehydrogenase catalyzes the conversion of 6-Hydroxycyclohex-1-enecarbonyl-CoA and NAD+ to 6-Ketoxycyclohex-1-ene-1-carboxyl-CoA NADH and H+. This group displays the characteristic catalytic and structural zinc sites of the zinc-dependent alcohol dehydrogenases. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes or ketones. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR) which have a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves each of which contacts a mononucleotide. A GxGxxG motif after the first mononucleotide contact half allows the close contact of the coenzyme with the ADH backbone. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants mammals) or tetramers (yeast bacteria) and have 2 tightly bound zinc atoms per subunit a catalytic zinc at the active site and a structural zinc in a lobe of the catalytic domain. NAD(H)-binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. In human ADH catalysis the zinc ion helps coordinate the alcohol followed by deprotonation of a histidine the ribose of NAD a serine then the alcohol which allows the transfer of a hydride to NAD+ creating NADH and a zinc-bound aldehyde or ketone. In yeast and some bacteria the active site zinc binds an aldehyde polarizing it and leading to the reverse reaction.
|